OtO Photonics Phekda Series Phekda-NIR Series Product Sheet Introduction

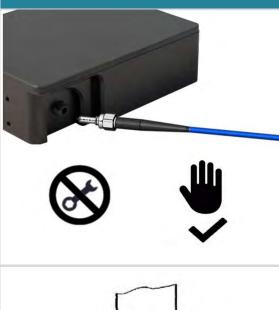
Phekda (PD) and Phekda-NIR (PD-NIR) series spectrometers combine CCD/CMOS or InGaAs sensors and 32-bit RISC microcontrollers in a newly designed "T-R-T" (Transmission-Reflection-Transmission) Czerny-Turner optical design.

PD and PD-NIR models deliver high resolution, high sensitivity, low dispersion, and high speed - making these spectrometers ideally-suited for a range of high resolution applications.

Phekda's compact and rigid package provides a stable measurement platform offering excellent thermal and humidity cycling performance together with minimum variation of resolution and wavelength shift due to shock and vibration.

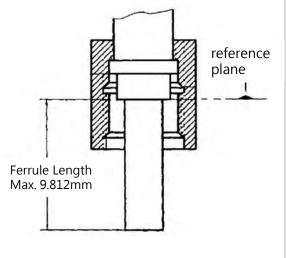
PC communication and power interface with the PD Series is via USB with an additional 6 I/Os for external connections.

The PD series 32-bit RISC controller can be addressed using OtO Photonics' fully-featured spectral measurement software "SpectraSmart " which includes Windows SDK and other example code.


PD/PD-NIR Series-307 Rev.1 www.otophotonics.com

PD & PD-NIR Product Sheet

Precautions


Picture

Description

To prevent over-tightening and damaging the slit in the spectrometer. Please Hand tighten the optical fiber only. Do not use any tool including wrench to tighten the optical fiber and SMA905 connector.

Applying adhesive to the optical fiber connector after hand tightening is recommended if the fiber needs to be fixed robustly for long term operation.

The SMA905 connector design complies with IEC 874-2:1993.

In order to prevent damage to the slit in the spectrometer the ferrule length of SMA905 fiber connector must shorter than 9.812mm.

This document is intended for sales and marketing purposes only and may not serve as a specification document for shipping or contracts. If a specification for product approval or IQC is required please contact OtO or your distributor.

PD/PD-NIR Series-307 Rev.1

PD & PD-NIR Product Sheet

Overview

1.1	PD & PD-NIR Series	P4
1.2	Response Curves	P5
Ke	y Features	
2.1	Characteristics	P7
2.2	Features	P8
M	echanical Designs	
3.1	Outlines and Dimensions	P9
3.2	Electronic Output Pin Assignments	P10
3.3	LED Indicators	P11
3.4	Sensor Overview	P12
Op	perations	
4.1	Pixel Signal Intensity	P13
4.2	Digital Input/Output	P13
4.3	Trigger Modes	P15
4.4	Ring Buffer	P18
US	B Data Transfer and Controls	P19

This document is intended for sales and marketing purposes only and may not serve as a specification document for shipping or contracts. If a specification for product approval or IQC is required please contact OtO or your distributor.

PD/PD-NIR Series-307 Rev.1

3

Piechologies AP Technologies Limited 21A Charles Street Bath Somerset BA1 1HX www.aptechnologies.co.uk

PD & PD-NIR Product Sheet

Overview

1.1 PD & PD-NIR Series Products

	Model	Wavelength Range(nm)											
		V25	V30	V32	NIRT 1A	NIRQ	SNR		Dynamic Range ^{*1}		A/D	Stray	Thermal
				625	1	1522		NF.	Range ^{*1}		A) D	Light	Stability
		~ 650	~ 658	~ 818	~ 878	~ 1578							
PD	PD1050	\checkmark	\checkmark	\checkmark	\checkmark		50	00	4700 (>3300)			0.2%	N/A
Series	PD1080	\checkmark	\checkmark	\checkmark	\checkmark		35	50	3200 (>2000)			0.2%	N/A
							High Gain		High Gain	Low Gain	bits		
PD-NIR Series	PD2570					\checkmark	2500	4000	6000 (>4700)	9300 (>6600)		0.2%	N/A

*1. The dynamic range is calculated using the upper limit dark noise value of multiple spectrometers.

This document is intended for sales and marketing purposes only and may not serve as a specification document for shipping or contracts. If a specification for product approval or IQC is required please contact OtO or your distributor.

www.otophotonics.com

PD/PD-NIR Series-307 Rev.1

Iechnologies AP Technologies Limited 21A Charles Street Bath Somerset BA1 1HX www.aptechnologies.co.uk

PD & PD-NIR Product Sheet

1.2 Wavelength Response Curve

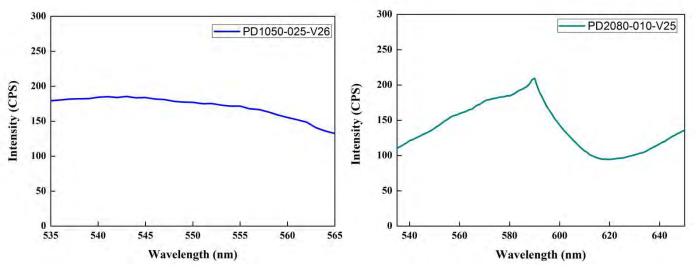


Fig. 1: PD1050-025-V26 with Halogen lamp

Fig. 2: PD2080-010-V25 with Halogen lamp

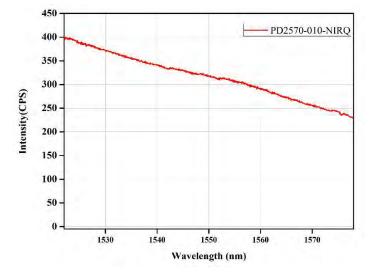


Fig. 3: PD2570-010-V26 with Halogen lamp

This document is intended for sales and marketing purposes only and may not serve as a specification document for shipping or contracts. If a specification for product approval or IQC is required please contact OtO or your distributor.

www.aptechnologies.co.uk

PD/PD-NIR Series-307 Rev.1

PD & PD-NIR Product Sheet

- 2.1 Characteristics
- PD Series: Wavelength range for LIBS: 535~565nm, 535~650nm. Wavelength range customizable, 400 to 1000nm.
- PD-NIR Series: Wavelength range for LIBS:1522~1578 nm. Wavelength range customizable, 900 to 1700nm.
- High resolution PD-V25 & PD-V30 <0.1nm @ slit 10um.

PD-V32 <0.35nm @ slit 25um PD-NIRQ <0.25nm @ slit 10um

- A variety of sensor can be chosen for specific application:
 2048 Pixels CCD Sensor
 - 4096 Pixels CMOS Sensor
 - 512 Pixels InGaAs Sensor
- Customizable component set: grating, sensor, and inlet slit
- Integration time: PD1050: 5ms~24s
 - PD1080: 0.1ms~24
 - PD2570: 0.1ms~24s
- 16 bit, 15MHz A/D converter
- USB 2.0 @ 480 Mbps (High Speed)
- An 8-pin external I/O port for connecting external devices
 a 6 pins for digital I/O data acquisition
- Plug-n-Play computer application support
- Ultra-precise continuous exposure, holding up to 4,000 records of spectrum data in memory
- Flash ROM storage
 - **u** Wavelength calibration parameters
 - Linearity correction parameters
 - Intensity correction parameters

This document is intended for sales and marketing purposes only and may not serve as a specification document for shipping or contracts. If a specification for product approval or IQC is required please contact OtO or your distributor.

www.otophotonics.com

PD/PD-NIR Series-307 Rev.1

PD & PD-NIR Product Sheet

► 2.2 Specifications

Features		Specifications						
Featu	res	PD1050	PD1080/2080	PD2570				
Sense	or	2048 Pixel CCD	4096 Pixel CMOS	512 Pixel InGaAs				
Dark n (upper l		< 20	< 32	High Gain < 14	Low Gain <10			
		4700 (>3300)	3200 (>2000)	High Gain	Low Gain			
SNI	R			6000 (>4700)	9300 (>6600)			
Dynar		500	350	High Gain	Low Gain			
Rang	ge	500		2500	4000			
Wavele Rang	-		n, 535~650 nm om 400 to 1000nm	1522~1578nm customizable from 900nn-1700nm				
Optical system of	characteristics	f/#: 5, NA: 0.1 Effective focal length (R1-R2): 85-101.5mm						
Optical o	lesign	Czerny-Turner optical design, 2nd and 3rd harmonics removed						
Dimens	sions	180 (L) x 175 (W) x 60.7 (H) mm						
Grati	ng	1500g 600nm / 2400g 300nm 830g 1200nm						
Slit wi	idth	10/25µm						
Integratio	on time	5ms~24s 0.1ms~24s						
Resolution ((FWHM)	Depends on the combination of slit, grating, and wavelength range depends						
Fiber optic	interface	SMA905, FCPC						
	Storage temperature	-30°C to +70°C						
Environmental requirements	Operating temperature	0°C to +50°C						
	Relative Humidity	0% - 90% non-condensing						
Data transfer	interface	USB 2.0 @ 480 Mbps						
Power speci	ifications	Power supply: 300mA at +5 VDC, Voltage: 4.75-5.25						

www.otophotonics.com

PD/PD-NIR Series-307 Rev.1

7

PIECONOGIES AP Technologies Limited 21A Charles Street Bath Somerset BA1 1HX www.aptechnologies.co.uk

PD & PD-NIR Product Sheet

Mechanical Designs

3.1 Outlines and Dimensions

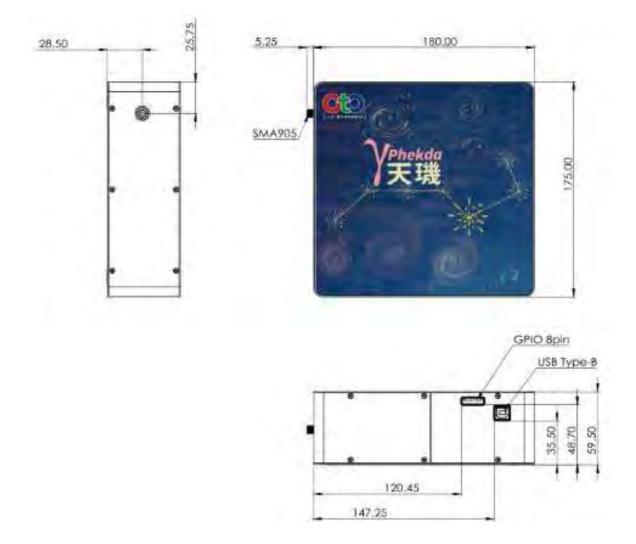


Figure 4. PD & PD-NIR series outlines and dimensions

This document is intended for sales and marketing purposes only and may not serve as a specification document for shipping or contracts. If a specification for product approval or IQC is required please contact OtO or your distributor.

PD/PD-NIR Series-307 Rev.1

TECHNOLOGIES AP Technologies Limited 21A Charles Street Bath Somerset BA1 1HX www.aptechnologies.co.uk

► 3.2 Electronic Output Pin Assignments

The PD & PD-NIR Series provides an 8-pin 2.0mm rear external I/O port.

Side entry type

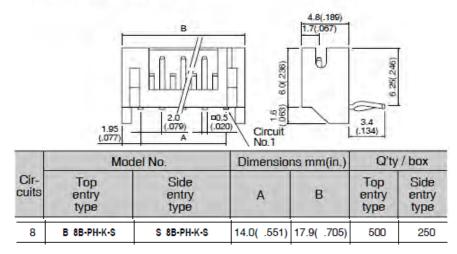


Figure 5. The 8-pin 2.0 mm rear external I/O port

This document is intended for sales and marketing purposes only and may not serve as a specification document for shipping or contracts. If a specification for product approval or IQC is required please contact OtO or your distributor.

www.otophotonics.com

PD/PD-NIR Series-307 Rev.1

PD & PD-NIR Product Sheet

External Ports

The following figure shows the external ports on the PD & PD-NIR Series. From left to right: the rear external I/O port, the PC USB port, and the LED indicator.

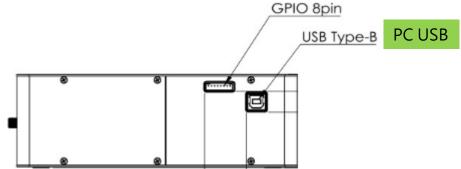


Figure 6. External ports on the PD & PD-NIR Series

• Rear Extension Port Pin# Description Alt Function

#Pin	Direct	Pin name	description
1	Power	5V Input/Output	When connecting to PC USB port, this pin is also connected to VBUS. This pin can provide around 0.1A power for external device.
2	Output	TX	UART TX. TX is the output from the RISC controller.
3	Input	RX	UART RX. RX is the input for the RISC controller.
4	Output	GPIO0	General Purpose Output 0.
5	Output	GPIO1	General Purpose Output 1.
6	Output	LS_ON	Light Source Turn ON.
7	Input	Trigger_IN	External Trigger Input Signal.
8	GND	GND	GND

This document is intended for sales and marketing purposes only and may not serve as a specification document for shipping or contracts. If a specification for product approval or IQC is required please contact OtO or your distributor.

www.otophotonics.com

www.aptechnologies.co.uk

PD/PD-NIR Series-307 Rev.1

PD & PD-NIR Product Sheet

► 3.3 Sensor Overview

Sensor / System Noise

The three key factors that affect the noise level of the output signal are: stability of the light source, electronic noise, and the sensor noise. Excluding the effect of the external light source, the first thing to check is the dark noise of the measurement system. Dark noise is defined as the voltage output (Vout RMS) over a period of 10ms integration time in a completely dark environment. So the dark noise level is solely determined by the electronic noise in the readout and the CCD/CMOS sensor itself.

Another way to determine the quality of the signal is signal-to-noise ratio (SNR). SNR is defined as the maximum signal level (65535) divided by RMS. Higher SNR means the signal is cleaner, and differences between signals are more discernible when signal levels are low.

• Signal Averaging

In general, there are two ways to obtain a smooth curve for a signal: signal averaging and boxcar filter. Signal averaging can reduce the influence of noise on individual pixels. It is natural that increasing the number of samples taken for averaging creates a better averaged curve, but then it takes more time get the final spectrum. On the time-based curve, the signal-to-noise ratio (SNR) increases in proportion to the square root of the number of samples taken. For example, if the number of samples taken is 100, the SNR is increased 10 times.

The second method, boxcar filter, uses neighboring pixels for averaging to get a smooth curve for the signal, but it negatively impacts the optical resolution. This method is not recommended if you need to find the peak values of the signal. These two methods can be combined together in a single measurement if required.

This document is intended for sales and marketing purposes only and may not serve as a specification document for shipping or contracts. If a specification for product approval or IQC is required please contact OtO or your distributor.

PD/PD-NIR Series-307 Rev.1

PD & PD-NIR Product Sheet

Operations

4.1 Pixel Signal Intensity

The spectrometer is shipped with a baseline signal intensity at 1,000 counts. In cases where the user needs to modify this baseline intensity, it can be done using control commands. There is a command for the user to adjust the AFE OFFSET. Another way to change the baseline signal intensity is to use the "background removal" feature in the software. Which one to use depends on the way the user wants to use the baseline signal intensity.

4.2 Digital Input/Output

General purpose input/output (GPIO)

The PD & PD-NIR Series comes with six 3.3V digital input/output pins that can be used for data acquisition on the 8-pin external I/O port. Using software, these I/O pins can be defined for different application purposes. To support some OEM customization needs, the PD & PD-NIR Series provides the flexibility to use a special clock generator (such as single pulse or PWM).

This document is intended for sales and marketing purposes only and may not serve as a specification document for shipping or contracts. If a specification for product approval or IQC is required please contact OtO or your distributor.

www.otophotonics.com

PD/PD-NIR Series-307 Rev.1 12

GPIO recommended voltages:

VIL(max) = 0.8VVIH(min) = 2.0V

GPIO maximum/minimum voltages:

VIN(min) = -0.3V

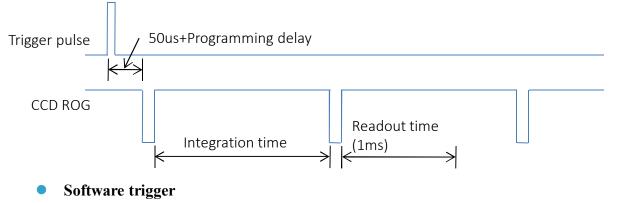
VIN(max) = 5.5V

USB 2.0

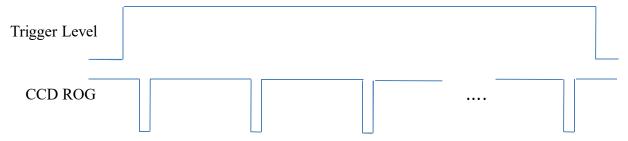
The 480Mbit/s USB (Universal Serial Bus) is a widely used data transfer standard for computers. The spectrometer control software provided by OtO Photonics uses USB to connect to multiple PD & PD-NIR Series spectrometers. The energy-saving PD & PD-NIR Series can be powered via a USB cable over its VBUS line.

This document is intended for sales and marketing purposes only and may not serve as a specification document for shipping or contracts. If a specification for product approval or IQC is required please contact OtO or your distributor.

www.otophotonics.com


PD/PD-NIR Series-307 Rev.1

PD & PD-NIR Product Sheet


4.3 Trigger Modes

Single trigger/single capture

In the single trigger/single capture mode (with preconfigured integration time), the spectrometer waits for a trigger pulse and captures the spectrum once upon receiving the trigger pulse. It can be triggered on a rising edge or a falling edge. An integration time programming delay can also be configured.

In the software trigger mode (with preconfigured integration time), the spectrometer waits for the external trigger signal level to go up then starts and continues to capture the spectrum using preconfigured integration time till the signal level drops.

• Software trigger/multiple capture

WW

In the software trigger/multiple capture mode (with preconfigured integration time and software commands to capture the spectrum), the spectrometer continues to capture the spectrum with the preconfigured integration time even when the trigger pulse drops.

Trigger Level					
CCD ROG					
This document is intended for sales and m shipping or contracts. If a specification for	arketing purposes on product approval or IC	ly and may not sen QC is required pleas	ve as a specification docu e contact OtO or your dis	ument for stributor.	
v.otophotonics.com		PD/PD-	-NIR Series-307	Rev.1	14
alachnologias	AP Technologies Lir	nited 21A Charles	Street Bath Somerset	BA1 1HX	

T: +44 (0) 1225 780400 F: +44 (0) 8701 266449 E: info@aptechnologies.co.uk

PD & PD-NIR Product Sheet

USB Data Transfer and Controls

Overview

The PD & PD-NIR Series is a compact spectrometer with an embedded microcontroller and supports USB data transfer. This section provides the computer programming details on how to control the PD & PD-NIR Series vial USB. This information is intended only for those who intend to develop their own software instead of using the standard software provided by OtO Photonics (SpectraSmart).

• Hardware Description

The PD & PD-NIR Series leverages the built-in 32-bit RISC microcontroller in the USB 2.0 chip. The program codes and data are store in the SPI Flash. This RISC microcontroller provides 64MByte of DDR and 64Mbits of Flash.

USB Information

PD & PD-NIR Series USB Vendor ID: 0x0638; Product ID: 0x0AAC The PD & PD-NIR Series supports USB 2.0 connection and uses USB bulk streams for data transfer between the spectrometer and the computer. For more information on USB, please visit the USBIF website: http://www.usb.org

This document is intended for sales and marketing purposes only and may not serve as a specification document for shipping or contracts. If a specification for product approval or IQC is required please contact OtO or your distributor.

www.otophotonics.com

PD/PD-NIR Series-307 Rev.1

PD & PD-NIR Product Sheet

Programming Guide

Application Programming Interface (API)

The following section provides a list of APIs and their functions.

Open PD & PD-NIR Series Spectrometer

Description: Connecting the computer to an PD & PD-NIR Series spectrometer.

- a. Function name: UAI_SpectrometerOpen
- b. Parameters:
 - **dev:** Since one computer can connect up to eight PD & PD-NIR Series spectrometers simultaneously, the 'dev' parameter specifies which device to connect to.
 - **handle:** A unique identifier returned by the API to identify the connected spectrometer. Each connected device is assigned a different handle. This handle is used by the API to identify which device to control in subsequent operations.

Get Frame Size

Description: Getting the frame size of the sensor in the spectrometer.

a. Function name: UAI_SpectromoduleGetFrameSize

b. Parameters:

device_handle: The unique identifier for the spectrometer to be controlled. **size:** Returning the frame size in 16-bit format.

D Acquire Wavelengths

Description: Starting to acquire wavelengths. The PD & PD-NIR Series can acquire the complete distribution of wavelengths.

a. Function name: UAI_SpectrometerWavelengthAcquire

b. Parameters:

device_handle: The unique identifier for the spectrometer to be controlled. **buffer:** The buffer to receive the data acquired.

This document is intended for sales and marketing purposes only and may not serve as a specification document for shipping or contracts. If a specification for product approval or IQC is required please contact OtO or your distributor.

ECHOOSIES AP Technologies Limited 21A Charles Street Bath Somerset BA1 1HX T: +44 (0) 1225 780400 F: +44 (0) 8701 266449 E: info@aptechnologies.co.uk

PD/PD-NIR Series-307 Rev.1

PD & PD-NIR Product Sheet

□ Acquire Spectrum

Description: Starting to acquire the spectrum. The PD & PD-NIR Series can acquire the complete spectrum corresponding to the data acquired by the

 $"UAI_SpectrometerWavelengthAcquire"\ function.$

a. Function name: UAI_SpectrometerDataAcquire

b. Parameters:

device_handle: The unique identifier for the spectrometer to be controlled.

integration_time_us: Specifying the integration time in 32-bit format (μ s). **buffer:** The buffer to receive the data acquired.

average: The number of samples to take for signal averaging to reduce noise.

Get Wavelength Range

Description: Getting the supported maximum and minimum wavelengths. **a. Function name:** UAI_SpectromoduleGetWavelengthStart

 $UAI_SpectromoduleGetWavelengthEnd$

b. Parameters:

device_handle: The unique identifier for the spectrometer to be controlled.lambda: Returning the maximum/minimum wavelength (nm) supported by the PD & PD-NIR Series in 32-bit format.

Get Integration Time Range

Description: Getting the maximum/minimum integration time.

a. Function name: UAI_SpectromoduleGetMaximumIntegrationTime

 $UAI_SpectromoduleGetMinimumIntegrationTime$

b. Parameters:

device_handle: The unique identifier for the spectrometer to be controlled. **Integration Time:** Returning the maximum/minimum integration time

supported by the PD & PD-NIR Series in 16-bit format.

Note: The minimum integration time is specified in microseconds (μ s). The maximum integration time is specified in thousand seconds (ks).

Close PD & PD-NIR Series Spectrometer

Description: Disconnect the computer from the PD & PD-NIR Series spectrometer.

a. Function name: UAI_SpectrometerClose

b. Parameters:

handle: The unique identifier for the spectrometer to be disconnected. The disconnected spectrometer will stop all of its operations when this command is executed.

This document is intended for sales and marketing purposes only and may not serve as a specification document for shipping or contracts. If a specification for product approval or IQC is required please contact OtO or your distributor.

PD/PD-NIR Series-307 Rev.1